Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

1-Aminopyridinium triiodidoplumbate(II)

Shan-Shan Yu, Hua Xian and Hai-Bao Duan*

Department of Chemistry, Nanjing Xiaozhuang College, Nanjing 210017, People's Republic of China
Correspondence e-mail: duanhaibao4660@163.com

Received 21 August 2010; accepted 9 September 2010
Key indicators: single-crystal X-ray study; $T=296 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.013 \AA$; disorder in main residue; R factor $=0.025 ; w R$ factor $=0.056$; data-to-parameter ratio $=26.3$.

The title complex, $\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{~N}_{2}\right)\left[\mathrm{PbI}_{3}\right]$, consists of a 1-aminopyridinium cation, disordered about a mirror plane, and a $\left[\mathrm{PbI}_{3}\right]^{-}$anion. The Pb^{2+} ion (site symmetry $\overline{1}$) is surrounded by six I atoms in a slightly distorted octahedral coordination. The PbI_{6} octahedra share faces, building up ${ }_{\infty}^{1}\left[\mathrm{PbI}_{6 / 2}\right]$ chains running along [010]. The cations are situated between the chains. Coulombic attractions and van der Waals interactions between the inorganic and organic components are mainly responsible for the cohesion of the structure.

Related literature

For background to hybrid materials, see: Rogow et al. (2010); Thirumurugan \& Rao (2008). For structures with lead halide building blocks, see: Li et al. (2008); Zhang et al. (2008).

Experimental

Crystal data
$\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{~N}_{2}\right)\left[\mathrm{PbI}_{3}\right]$
$M_{r}=683.03$
Orthorhombic, Pnma
$a=15.0417$ (19) \AA
$b=8.1316$ (10) \AA
$c=10.5625(14) \AA$
$V=1291.9(3) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=20.18 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
$0.6 \times 0.2 \times 0.1 \mathrm{~mm}$

Data collection
Bruker SMART CCD area-detector diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
$T_{\text {min }}=0.011, T_{\text {max }}=0.133$
10792 measured reflections 1607 independent reflections 1263 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.036$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.025 \quad 1$ restraint
$w R\left(F^{2}\right)=0.056 \quad H$-atom parameters constrained
$S=1.11$
1607 reflections
61 parameters
$\Delta \rho_{\text {max }}=0.86 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-1.05 \mathrm{e}^{-3}$

Table 1
Selected bond lengths (\AA).

$\mathrm{Pb} 1-\mathrm{I} 3$	$3.2301(5)$	$\mathrm{Pb} 1-\mathrm{I} 2$	$3.2412(5)$
$\mathrm{Pb} 1-\mathrm{I} 1$	$3.2303(5)$		

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors thank the Science and Technology Department of Jiangsu Province for financial support (grant No 10774076).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2395).

References

Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Li, Y., Zheng, G., Lin, C. \& Lin, J. (2008). Cryst. Growth Des. 8, 1990-1996.
Rogow, D. L., Russell, M. P., Wayman, L. M., Swanson, C. H., Oliver, A. G. \& Oliver, S. R. J. (2010). Cryst. Growth Des. 10, 823-829.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Thirumurugan, A. \& Rao, C. N. R. (2008). Cryst. Growth Des. 8, 1640-1644.
Zhang, Z. J., Xiang, S. C. \& Guo, G. C. (2008). Angew. Chem. Int. Ed. 47, 41494152.

supplementary materials

Acta Cryst. (2010). E66, m1259 [doi:10.1107/S1600536810036263]
1-Aminopyridinium triiodidoplumbate(II)

S.-S. Yu, H. Xian and H.-B. Duan

Comment

Inorganic metal-halide building-blocks have received special attention with respect to the construction of inorganic-organic hybrid materials (Rogow et al., 2010; Thirumurugan et al., 2008). Among these materials octahedral building blocks of lead halides are frequently found and numerous crystal structures, from one-dimensional chains to three-dimensional frameworks (Li et al., 2008; Zhang et al., 2008), were observed. Herein we report the crystal structure of the title compound, $\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{~N}_{2}\right)\left[\mathrm{PbI}_{3}\right]$ (I).

Compound (I) crystallizes with one $\left[\mathrm{PbI}_{3}\right]^{-}$anion and one 1-aminopyridinium cation in the asymmetric unit (Fig. 1). The cation is disordered about a mirror plane. The Pb^{2+} cation is coordinated by six iodide anions in a slightly distorted octahedral coordination geometry. The PbI_{6} octahedra share faces, resulting in anionic chains running along [010]. As show in Fig. 2., the straight inorganic chains are embedded in cationic stacks. Besides Coulomb attractions, only weak van der Waals interactions between the inorganic and organic components exist.

Experimental

A mixture of $\mathrm{PbI}_{2}(922 \mathrm{mg}, 2.0 \mathrm{mmol})$ and 1-aminopyridinium iodide $(190 \mathrm{mg}, 2.0 \mathrm{mmol})$ in a molar ratio of 1:1 in DMF was slowly evaporated to produce orange needle-shaped crystals.

Refinement

The H atoms were placed in geometrically idealized positions and refined as riding atoms, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The cation is disordered about a mirror plane. Atoms C3 and N1 occupy the same site with an occupation factor of 50%. The respective $-\mathrm{NH}_{2}$ group and the H atom show likewise half-occupation.

Figures

Fig. 1. Part of the structure of (I), showing the atom-numbering scheme and displacement ellipsoids at the 30% probability level. Atom C3 and N1 are positionally disordered. H atoms have been omitted for clyrity. [Symmetry code: A $x, 0.5-y, z$.]

supplementary materials

Fig. 2. The alignment of inorganic and organic components in the crystals of 1 along [010].

1-Aminopyridinium triiodidoplumbate(II)

Crystal data

$\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{~N}_{2}\right)\left[\mathrm{PbI}_{3}\right]$
$M_{r}=683.03$
Orthorhombic, Pnma
Hall symbol: -P 2ac 2n
$a=15.0417$ (19) \AA
$b=8.1316(10) \AA$
$c=10.5625(14) \AA$
$V=1291.9(3) \AA^{3}$

Data collection

Bruker SMART CCD area-detector
diffractometer
Radiation source: fine-focus sealed tube
graphite
phi and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
$T_{\text {min }}=0.011, T_{\text {max }}=0.133$
10792 measured reflections

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.025$
$w R\left(F^{2}\right)=0.056$
$S=1.11$

1607 reflections
61 parameters
1 restraint
$Z=4$
$F(000)=1168$
$D_{\mathrm{x}}=3.512 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
$\mu=20.18 \mathrm{~mm}^{-1}$
$T=296$ K
Needle, orange
$0.6 \times 0.2 \times 0.1 \mathrm{~mm}$

1607 independent reflections
1263 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.036$
$\theta_{\text {max }}=27.6^{\circ}, \theta_{\text {min }}=2.4^{\circ}$
$h=-19 \rightarrow 19$
$k=-10 \rightarrow 10$
$l=-13 \rightarrow 13$

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.016 P)^{2}+2.8133 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.86$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-1.05$ e \AA^{-3}

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(A^{2}\right)$

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
Pb 1	0.5000	0.5000	0.5000	$0.05028(11)$	
I 1	$0.66188(4)$	0.2500	$0.44218(7)$	$0.06995(19)$	
I 2	$0.45861(4)$	0.2500	$0.73162(5)$	$0.05961(16)$	
I 3	$0.38187(5)$	0.2500	$0.33215(6)$	$0.06837(19)$	
C 1	$0.0996(6)$	$0.1682(10)$	$0.4247(8)$	$0.100(3)$	
H 1	0.0708	0.1100	0.3609	0.120^{*}	
C 2	$0.1419(7)$	$0.0883(12)$	$0.5186(9)$	$0.103(3)$	
H 2	0.1424	-0.0261	0.5197	0.123^{*}	
C 3	$0.1824(5)$	$0.1708(11)$	$0.6087(7)$	$0.100(3)$	0.50
H 3	0.2114	0.1142	0.6731	0.120^{*}	0.50
N1	$0.1824(5)$	$0.1708(11)$	$0.6087(7)$	$0.100(3)$	0.50
N2	$0.2230(10)$	$0.132(2)$	$0.7177(16)$	$0.121(5)$	0.50
H2A	0.2415	0.2091	0.7672	0.146^{*}	0.50
H2B	0.2307	0.0310	0.7382	0.146^{*}	0.50

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pb1	$0.0585(2)$	$0.03787(16)$	$0.05448(19)$	$0.00017(13)$	$0.00130(15)$	$-0.00097(14)$
I1	$0.0549(3)$	$0.0611(4)$	$0.0938(5)$	0.000	$0.0189(3)$	0.000
I2	$0.0727(4)$	$0.0575(3)$	$0.0486(3)$	0.000	$0.0023(3)$	0.000
I 3	$0.0753(4)$	$0.0603(4)$	$0.0696(4)$	0.000	$-0.0268(3)$	0.000
C 1	$0.120(7)$	$0.100(6)$	$0.081(5)$	$-0.001(5)$	$-0.015(5)$	$-0.010(5)$
C 2	$0.104(7)$	$0.089(6)$	$0.114(8)$	$-0.005(5)$	$0.008(6)$	$0.004(6)$
C 3	$0.064(4)$	$0.162(9)$	$0.074(5)$	$0.010(4)$	$0.010(3)$	$0.026(5)$
N 1	$0.064(4)$	$0.162(9)$	$0.074(5)$	$0.010(4)$	$0.010(3)$	$0.026(5)$
N 2	$0.111(11)$	$0.121(12)$	$0.133(13)$	$0.004(10)$	$-0.004(11)$	$0.029(11)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{Pb} 1-\mathrm{I} 3^{\mathrm{i}}$	$3.2301(5)$	$\mathrm{C} 1-\mathrm{C} 1^{\mathrm{iii}}$
$\mathrm{Pb} 1-\mathrm{I} 3$	$3.2301(5)$	$\mathrm{C} 1-\mathrm{C} 2$

supplementary materials

Fig. 1

supplementary materials

Fig. 2

